"Group Inversion Approach" for Detection of Soil Moisture Temporal-Invariant Locations

نویسنده

  • Claudia Notarnicola
چکیده

This paper presents an approach denominated Group Inversion Approach (GIA) which aims at detecting soil moisture temporal invariants, i.e., the stable temporal soil moisture locations, by using mainly remotely sensed data. The soil moisture temporal invariants are those locations where independently of the absolute value changes, the relative spatial distribution of soil moisture remains almost constant. In this procedure, the soil moisture values estimated from different inversion approaches and sensor configurations are compared among themselves and with the ground data. The procedure has been tested in a watershed of around 7,000 km with data collected during the SMEX’02 experiment in Iowa (USA). The results indicate that fields with inversion errors lower than five times the soil moisture variability detected with ground measurements represent well the mean watershed soil moisture values. The GIA technique has been also found in good agreement with the classical technique used to detect the stable soil moisture features, based exclusively on ground measurements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Understanding Spatio-temporal Patterns of Soil Moisture at the Field Scale

Spatial patterns of soil moisture across a field seem to exhibit some degree of temporal stability, which has been proved to be related to such invariant attributes as topography and soil characteristics. However, how these patterns and locations might be predicted from these attributes is not well understood. Motivated by a desire to understand these relationships, the objective of this study ...

متن کامل

Relationship between topography, land use and soil moisture in loess hillslopes

The relationship between topography, land use, and topsoil moisture storage is investigated for a small catchment with undulating deep loess hilslopes in the south of the Netherlands. For a period of 10 months, soil moisture profiles have been measured weekly at 15 locations throughout the catchment. A Generalized Additive Model was employed to find relationships between the various factors inf...

متن کامل

A new perspective on the spatio-temporal variability of soil moisture: temporal dynamics versus time-invariant contributions

Knowledge about the spatio-temporal variability of soil moisture is essential to understand and predict processes in climate science and hydrology. A significant body of literature exists on the characterization of the spatial variability and the rank stability (also called temporal stability) of absolute soil moisture. Yet previous studies were generally based on short-term measurement campaig...

متن کامل

Temporal Stability of Soil Moisture and Radar Backscatter Observed by the Advanced Synthetic Aperture Radar (ASAR)

The high spatio-temporal variability of soil moisture is the result of atmosphericforcing and redistribution processes related to terrain, soil, and vegetation characteristics.Despite this high variability, many field studies have shown that in the temporal domainsoil moisture measured at specific locations is correlated to the mean soil moisture contentover an area. Since the measurements take...

متن کامل

Influence of Surface Roughness Spatial Variability and Temporal Dynamics on the Retrieval of Soil Moisture from SAR Observations

Radar-based surface soil moisture retrieval has been subject of intense research during the last decades. However, several difficulties hamper the operational estimation of soil moisture based on currently available spaceborne sensors. The main difficulty experienced so far results from the strong influence of other surface characteristics, mainly roughness, on the backscattering coefficient, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2009